SCHOOL OF ENGINEERING

A Message from the Dean

Welcome to the School of Engineering at Fairfield University. We are devoted to serving students as they successfully pursue undergraduate and graduate engineering degrees. The School provides opportunities for students to combine study with experience and professional practice through classroom instruction, industrial internships, and experiential learning offering the prospect for the best in engineering education.

The School of Engineering strives to maintain the highest level of instructional integrity and remains committed to the Ignatian ideals of education, finding bigger answers to society’s problems, and providing service to socially and economically disadvantaged populations. A true reflection that Engineering is a “Service to Humanity” profession.

In pursuit of this mission, we are committed to expanding student engagement in the engineering professions. The School's graduates will have mastered theoretical and practical knowledge of engineering skills, and will have strong foundational knowledge in communications, critical judgment, social responsibility, economics and ethics to use in building their professional careers.

On our website, you will find detailed listings of the educational objectives of each of the engineering programs offered in the School of Engineering. The curricula and degree requirements are linked to the objectives through student learning outcomes leading to national accreditation. The engineering curricula includes the University's Magis Core - the hallmark of Fairfield's education - that aims to help transform our students into thinking citizens and lifelong learners, and prepare them to live an inspired life. Additionally, our ambition in the School of Engineering is to enable all our students to assume positions of technical leadership and professional responsibility, and to achieve full satisfaction in their jobs, or in graduate studies, upon graduation from Fairfield University.

On behalf of the entire School of Engineering, welcome!

Richard H. Heist, Ph.D.
Dean, School of Engineering

School Overview

Vision

The School of Engineering will be a recognized leader in modern, experiential-based engineering education and known for innovative, applied research that, together, fosters a student-centered and research-focused educational experience that prepares graduates for successful and rewarding careers in service to others.

Mission

The School of Engineering is dedicated to: (1) Providing transformative educational experiences that prepare our graduates for successful careers; (2) advancing engineering knowledge through applied research; and, (3) supporting the University’s mission of whole-person development (cura personalis) by inculcating into our students the service-to-humanity character of the engineering profession.

Purpose

We believe a strong, experientially based curriculum, supported by faculty with an applied research focus leads to:

- Enhanced academic reputation.
- Increased scholarship of students and faculty.
- Students, imbued with the service-to-humanity character of the engineering profession, prepared to meet the future challenges of a rapidly evolving, technology-based society.

Values

“Our Ethics in Action”

Excellence in all we do

Engagement at every level

Innovation across all disciplines

Diversity and Inclusion in all things

Service to Humanity as a lifelong goal

Character as a foundation of Leadership

Mentoring

Entering and continuing students meet with academic advisors to design jointly their schedule of courses. Students review their academic records before course registration each semester with assistance from advisors to keep abreast of their progress. The school provides counseling to students upon request so that their academic goals can be achieved efficiently and economically. Department chairs and program directors are actively involved in student advising and mentoring. Practicing engineers are often invited to participate in mentoring of interdisciplinary teams in the final senior design project.

Tutoring

Out-of-classroom assistance, provided by engineering professionals, and peer tutors is available in the school's tutorial center on a daily basis and a peer led content mastery program in foundational courses began in 2014. A schedule of tutorial/mentoring services is distributed to all students in the beginning of each term.

Facilities

The offices of the School of Engineering, along with classrooms, primary laboratory and computer facilities are located in the Bannow Science Center. The engineering reference and circulating collection is housed in the University's DiMenna-Nyselius Library. The School's laboratories are equipped with modern instrumentation and are improved annually with financial assistance of the university, the alumni and private foundations. In order to provide an environment for experiential learning that is closely integrated with classroom learning, the School of Engineering laboratories provide the capability for demonstration of phenomena, simulation of processes, measurements, and data management. Finally, a growing number of engineering courses are offered online as needed. The School's website (http://fairfield.edu/soe/) offers information on the School, its programs, courses, and faculty.

Transfer Admission

General Transfer

Students with previous studies at other accredited institutions may apply for transfer to the School of Engineering. Credit for work completed elsewhere, with a grade of C or better, will be granted for equivalent Fairfield courses, in accordance with Fairfield University guidelines. The transfer student must provide an official transcript of all academic work
Transfer from Community Colleges

The School of Engineering has articulation agreements with the Connecticut College of Technology embracing the 12 community colleges in Connecticut. Under this agreement, the B.S. degree completion by graduates of community colleges with an engineering associate's degree is greatly facilitated at Fairfield University. Bridge courses to facilitate transfer, and some financial aid to transfers from community colleges, are also offered by the School of Engineering.

School Activities/Relationships with Area Industry

Engineering students at Fairfield University may join the Engineering Student Society, an umbrella organization that embraces student chapters of the American Society of Mechanical Engineers, Society of Automotive Engineers, the Institute of Electrical and Electronics Engineers, and the Society of Women Engineers. Students are encouraged to join ESS and profit from events sponsored by the chapters. Engineering students initiated an Engineers Without Borders student chapter in 2015.

The School of Engineering maintains direct relations with area industries and manufacturers. Students are encouraged to post their resumes on the University's Career Development site, Stage4Hire (http://fairfield.edu/stags4hire/), and to visit the site often to check for jobs and internships. These open lines of communication encourage the flow of information and support that keeps the engineering curriculum current and relevant to the environment in industry. These contacts are particularly useful to students in the senior design project course where they tackle real-life engineering problems encountered by practicing engineers and become involved in the mainstream of engineering activity.

School of Engineering Executive Advisory Board

The School of Engineering (SOE) receives philanthropic support and strategic guidance from the SOE Advisory Board, a group of men and women in leading positions in industry and education. Additionally, each program area in the SOE receives program development guidance from its program advisory board.

Degrees

Bachelor of Science

The School of Engineering offers undergraduate programs leading to the Bachelor of Science in the following fields:

- Bioengineering (http://catalog.fairfield.edu/undergraduate/engineering/bioengineering/)
- Computer Science (http://catalog.fairfield.edu/undergraduate/engineering/computer-science-software-engineering/)
- Electrical Engineering (http://catalog.fairfield.edu/undergraduate/engineering/electrical-computer-engineering/)
- Mechanical Engineering (http://catalog.fairfield.edu/undergraduate/engineering/mechanical-engineering/)

Students in these programs complete 126 to 134 credit hours. Students begin their studies with ENGR 1031 Fundamentals of Engineering or CPSC 1101 Introduction to Computing and complete the degree requirements with the team-based Senior Design Project. ENGR 1031 is designed to introduce first-year students to important design elements and the tools of engineering and develop their skills in analysis and synthesis, and in teamwork. It further provides the basis for students to select the engineering discipline most suitable to their skills and career objectives. The Senior Design Project caps students' engineering education by implementing engineering design principles and associated skills in designing for functionality, reliability, sustainability and economy in real-world projects undertaken by multidisciplinary teams. All School of Engineering programs include experiential learning in laboratory courses and culminate with the Senior Design Project. Students can avail themselves of opportunities for independent study and for internships in local industry. The undergraduate curriculum may be completed as a full-time traditional 4-year program or part time.

Part-Time Program

This program allows fully employed students to pursue engineering degrees on a part-time basis at a pace suited to their circumstances. Many employers provide tuition reimbursement. The curriculum requirements for the BS degrees through this program are the same as those for the full-time traditional programs. Engineering courses are available through evening and hybrid study courses. Advanced engineering classes, offered in the evening, are subscribed by both full-time and part-time students.

General and Major Electives

Major electives are chosen from the engineering department. The courses may be chosen with the approval of the student's advisor from among other courses offered in the School of Engineering.

General Electives may be chosen from any courses offered at the university and are frequently chosen to help fulfill requirements toward a selected minor.

Major Areas of Study

Specific program objectives and curriculum requirements are provided in the sections that follow each engineering discipline. In general, the curricula consist of four areas:

- major field requirements
- major field electives
- general education core curriculum courses
- general electives

Concentration within Majors

Certain major fields of study have specialized options that can be taken to fulfill special career plans, under advisement from the department chair. Numerous elective courses afford opportunities for students to gain deeper knowledge and skills in areas of their interest.

Minors in Other Fields of Study

Engineering students are eligible for a mathematics minor with the completion of five mathematics courses. In addition, engineering majors can opt to fulfill the requirements for other minors.

Minor in Engineering

The School of Engineering offers a minor in engineering for non-engineering students. This is a 14-credit hour course of study for students who have completed two courses in calculus and two in physics. Four engineering courses of three credits each, and two laboratory courses of one credit each, are required for the completion of
the minor. Students may also choose an additional engineering course to substitute for the math or science courses, provided prerequisites are met. Students who choose the engineering minor will benefit intellectually from exploring the field of engineering and will strengthen their candidacy for professional studies such as medicine or law.

An 18-credit minor in Computer Science is also available, see the Computer Science (http://catalog.fairfield.edu/undergraduate/engineering/computer-science-software-engineering/computer-science-minor/) section for details.

Core Curriculum

Students are obligated to complete the course of studies as described in the catalog used during the year they enter Fairfield University. A new set of core requirements has been designated for students entering the University during the 2019-2020 academic year. Students who entered Fairfield University prior to Fall 2019 must complete the previous core requirements, which may be found by referencing the Catalog Archive (http://catalog.fairfield.edu/archive/).

Magis Core Curriculum

Beginning with the Class of 2023, all undergraduate students will be required to complete the Magis Core Curriculum. Please refer to the Curricula section of this undergraduate catalog for a detailed explanation of the Magis Core (http://catalog.fairfield.edu/undergraduate/arts-sciences/magis-core/)

University Honors Program

The School of Engineering participates in the University Honors Program (http://catalog.fairfield.edu/undergraduate/arts-sciences/honors-program/), an interdisciplinary course of study (23 credits) open to invited freshmen and sophomores and devoted to intellectual history, interdisciplinary studies, and advanced work in the student's major field.

Five-Year Pathways to Bachelor's and Master's Degrees

- Applied Data Science Five-Year Dual Degree Program (http://catalog.fairfield.edu/undergraduate/engineering/computer-science-software-engineering/5-year-applied-data-science/)
- Electrical and Computer Engineering Five-Year Dual-Degree Program (http://catalog.fairfield.edu/undergraduate/engineering/electrical-computer-engineering/electrical-computer-engineering-five-year-dual-degree-bs-ms/)
- Management of Technology Five-Year Dual-Degree Program (http://catalog.fairfield.edu/undergraduate/engineering/mot/five-year-mot-program/)
- Mechanical Engineering Five-Year Dual-Degree Program (http://catalog.fairfield.edu/undergraduate/engineering/mechanical-engineering/mechanical-engineering-five-year-dual-degree-bsms/)
- Software Engineering Five-Year Dual-Degree Program (http://catalog.fairfield.edu/undergraduate/engineering/computer-science-engineering-five-year-dual-degree-curriculum/)

A master's degree in engineering is becoming more commonly seen as the entry level degree in the workplace. A master’s level engineering education gives a great return on your investment as well as a more focused and satisfying career.

Students can now complete a five-year pathway to both BS and MS degrees in Electrical and Computer Engineering, Mechanical Engineering, and Software Engineering. Additionally, in five years, students can also complete a BS degree in any of the undergraduate engineering programs followed by an MS in Management of Technology. Typically students should meet with their advisor during their junior year and complete detailed planning for the specific requirements for the bachelors and masters degrees that they are interested in. All of the five-year pathways require a minimum of 3.00 GPA along with approval from the faculty advisor.

Courses

General Engineering

ENGR 1031 Fundamentals of Engineering

Attributes: MWID Magis Core: Writing in the Discipline

This course provides core engineering knowledge and competencies in a highly interactive class format. Topics include professional skills such as technical writing and presentation, guidelines for professional engineering practice, and career preparation. Introduction to the fields, roles, and industries of engineering also serves as a basis for selection of engineering major field. Hands-on team projects are core learning experiences. They form a structured introduction to the implementation of principles of design and engineering methodologies, system engineering management, and presentation skills. Guest presenters and field trips augment this course, which is taught by interdisciplinary faculty teams. Previously EG 0031.

ENGR 1060 Science, Technology, Engineering, and Mathematics of the Guitar

Fee: $250 Engineering Lab Fee

This course looks at the design elements, manufacturing and assembly of solid-body electric guitars. Science, technology, engineering, and mathematics (STEM) concepts that relate directly to guitars are used to help students make an applied learning connection. Each student will construct their own electric guitar. Course will cover wood species and the environment, guitar headstock design features, chemistry of finishes, math applications in a guitar, physical science aspects of the guitar such as mechanical systems, concepts of sound waves, string tension, fretboard layout, intonation, and electronics. Studio-style class, lecture, and lab time combined throughout course. A lab fee applies to cover materials. Previously EG 0060.

ENGR 2130 Engineering Graphics I

This is a basic course in engineering graphics principles and is taught simultaneously with SolidWorks, a 3-D modeling design application. Using computer design, the course stresses orthographic projection, dimensioning, sectional views, 3-D part modeling, assembly modeling, drafting and engineering drawings, and geometric tolerance representation. Students will gain a working knowledge of SolidWorks in engineering design. Course requires a personal laptop running a 64-bit Windows 10 operating system. Previously EG 0130.

ENGR 2145 Mathematical Analysis

Attributes: EVAP Environmental Studies: Applied Professional Skills

Corequisite: ENGR 2145P

Prerequisite: MATH 1142.

In this course students will learn mathematical and numerical methods such as differentiation, integration, and Fourier analysis and how to apply these methods to solve scientific problems. Additionally, the course will cover statistics including data analysis, trend fitting, data correlation, and interpolation. Students will learn to use MATLAB as a tool but also become proficient in programming. Previously EG 0145.
ENGR 2145P Mathematical Analysis PLG 0 Credits
Peer learning group for ENGR 2145. Previously EG 0145P.

ENGR 3260 Robots 3 Credits
Prerequisite: PHYS 1171.
Introductory course in robotics develops understanding of how robotic systems integrate sensors, actuators, and control systems to achieve specific goals. Principles of autonomy, programming, wireless communications, sensor applications, mechatronics, electrical power, electric motors, pneumatics, structure, and locomotion will be understood and applied. Design of robotic subsystems will utilize multiple areas of knowledge. The course will involve application of statistical analysis to quantify robot performance. Service learning is an integral part of the course. All participants will participate in weekly mentoring of a youth robotics competition team to put into practice the principles learned in class, and to learn through community interaction from other students using robots to accomplish different feats. Previously EG 0260.

ENGR 4301 Feedback Control Systems 3 Credits
Prerequisites: ELEG 3301, MATH 2251.
This course emphasizes analysis and synthesis of closed loop control systems using both classical and state-space approaches with an emphasis on electro-mechanical systems. The mathematical requirements include the Laplace transform methods of solving differential equations, matrix algebra, and basic complex variables. The discussion of classical control system design includes the modeling of dynamic systems, block diagram representation, time and frequency domain methods, transient and steady state response, stability criteria, controller action [Proportional (P); proportional and integral (PI); Proportional, integral, and derivative (PID); and pseudo-derivatives feedback], root locus methods, the methods of Nyquist and Bode, and dynamics compensation techniques. The discussion of state-space methods includes formulation and solution (analytical and computer-based) of the state equations and pole-placement design. The course integrates the use of computer-aided analysis and design tools (MATLAB) so as to ensure relevance to the design of real world controlled electro-mechanical systems using case studies and applications to electrical and mechanical systems. Includes lab (hardware-based) exercises. Graduate equivalent: MEEG 5301. Previously EG 0300.

ENGR 4303 Industrial Automation 3 Credits
Prerequisite: ELEG 2213.
This course will give students an understanding of industrial automation concepts in the areas of process control, manufacturing, material handling, and others. Topics covered include sequential control, ladder logic, PLC systems and programming; industrial sensors; feedback control systems, PID and advanced control algorithms; distributed control systems, industrial networking, including network types and standards. Practical implementation of typical systems is discussed. The course will consist of lectures, case studies, and lab exercises. Graduate equivalents: ECEG 5303, MEEG 5303. Previously EG 0303.

ENGR 4305 Design of Mechatronics Systems 3 Credits
Prerequisite: Senior standing.
This course covers development of mechatronics theory and applications to systems dependent upon the integration of mechanical, electrical and computer engineering. Students assemble hardware components to create a product design that fulfills a specified task in a mechatronics system. Students develop design skills in mechanisms, electrical devices, and software to create, test, and verify system function. Graduate equivalent: MEEG 5305. Previously EG 0305.

ENGR 4330 Engineering Graphics II 3 Credits
This course introduces CATIA Version 5, the leading CAD/CAM/CAE application used by automotive, aerospace, shipbuilding, and consumer goods industries. It provides mechanical, electrical, automotive, aerospace, and marine engineers and architects with the design tools to take products from concept to completion in one seamless application. This course covers basic solid modeling concepts of individual sheet metal and machined parts from detailed drawings. Complex Shape Modeling using wireframe concepts and surface-based modeling is covered. Building of assemblies of components and control of their positioning and orientation, as well as motion simulation is covered. Fully detailed production drawings of components and assemblies are also covered. Previously EG 0330.

ENGR 4360 Engineering Project Management 3 Credits
Attributes: HASM Humanitarian Action Minor Skills/Method Course
This course concentrates on the general methodology of managing an engineering project from concept to operational use with emphasis on the functions, roles, and responsibilities of the project manager. Study of the basic principles and techniques related to controlling resources (i.e., people, materials, equipment, contractors, and cash flow) to complete a project on time and within budget while meeting the stated technical requirements. Through group and individual activities, including case study review and field work, students will learn to apply project management tools and techniques. The course will be taught by teaching each phase of project management as we complete the relevant aspects of the project in the field. There will be some classroom time for introducing concepts, and planning. However, the majority of time each day will be spent in the field executing the project, putting into practice the phases of project management. The course will prepare students with the ability to learn the necessary background information and hands-on technical skills, to be flexible and adaptable in difficult environments. These skills will be valuable in many areas, particularly in the planning and execution of humanitarian action and engineering in developing countries. Enrollment by permission only. Students must be able to study abroad. Previously EG 0360.

ENGR 4415 Engineering Applications of Numerical Methods 3 Credits
Prerequisite: CPSC 1131.
Topics include root-finding, interpolation, linear algebraic systems, numerical integration, numerical solution of ordinary and partial differential equations, modeling, simulation, initial boundary value problems, and two point boundary value problems. Graduate equivalents: ECEG 5415, MEEG 5415. Previously EG 0315.
ENGR 4961 Senior Design Project I 3 Credits
Prerequisite: Completion of all non-elective program courses; completion of other program requirements to enable graduation within the year of completion of ENGR 4962.
In this capstone course, students work in teams on advanced projects that emphasize engineering design with due attention to design constraints and engineering standards. The overarching scope of this course is to transform engineering students to practicing engineers. Under the guidance of a faculty instructor and a mentor, each team conducts literature searches, write a technical proposal and its members develop skills in information analysis and synthesis; they model and test prototypes of their devices, and make frequent oral and poster presentations of their work to faculty and peers, and submit timely progress reports. In the process, they receive instruction in effective communication and presentation practices, and develop an appreciation of teamwork and collective success. This two-semester sequence of courses begins in the fall of the academic year and concludes at the end of the spring term with a final team oral presentation and a final written report, and a working prototype of the team’s project. It also includes sample hardware fabrication in the machine laboratory. Previously EG 0390.

ENGR 4962 Senior Design Project II 3 Credits
Prerequisite: ENGR 4961.
In this capstone course, students work in teams on advanced projects that emphasize engineering design with due attention to design constraints and engineering standards. The overarching scope of this course is to transform engineering students to practicing engineers. Under the guidance of a faculty instructor and a mentor, each team conducts literature searches, write a technical proposal and its members develop skills in information analysis and synthesis; they model and test prototypes of their devices, and make frequent oral and poster presentations of their work to faculty and peers, and submit timely progress reports. In the process, they receive instruction in effective communication and presentation practices, and develop an appreciation of teamwork and collective success. This two-semester sequence of courses begins in the fall of the academic year and concludes at the end of the spring term with a final team oral presentation and a final written report, and a working prototype of the team’s project. It also includes sample hardware fabrication in the machine laboratory. Previously EG 0391.

ENGR 4980 Internship 0-3 Credits
Internships are off-campus experiential learning activities designed to provide students with opportunities to make connections between the theory and practice of academic study and the practical application of that study in a professional work environment. Internships offer the opportunity to ‘try out’ a career while gaining relevant experience and professional connections. Internships are completed under the guidance of an on-site supervisor and a faculty member, who in combination with the student will create a framework for learning and reflection. Previously EG 0398.

ENGR 4990 Independent Study 1-4 Credits
Previously EG 0399.

Other Subjects
Consult the pages for each department for courses in the following fields:

- Computer Science and Software Engineering (http://catalog.fairfield.edu/undergraduate/engineering/computer-science-software-engineering/)
- Electrical and Computer Engineering (http://catalog.fairfield.edu/undergraduate/engineering/electrical-computer-engineering/)
- Mechanical Engineering (http://catalog.fairfield.edu/undergraduate/engineering/mechanical-engineering/)